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ABSTRACT

A formalism is developed describing the time evolution
of wave correlations in a uniformly turbulent ensemble of weakly
nonlinear systems. The statistics are built into the formalism
a priori. With closure (of the hierarchy of equatiohs for wave
correlations) appropriate to the inclusion of resonant three-wave
interactions, a (nonlinear) kinetic equation for the two-wave
correlations is derived and various properties of this equation
are discussed. The effects of both bilinear and trilinear non-
linearities are considered. Modifications of the formalism in
situations where there is a weak (linear) instability Yk’

(IYk/wkI << 1) are also considered.
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I: INTRODUCTION
In recent years, considerable resea.rchl"8 has been devoted to the
study of the time behavior of weakly nonlinear systems evolving according to

equations of the form
152 2(t) = L glxt) + BlE(o),2t)) - (1)

Derending on the specific problem, g(g,t) is a finite dimension column vector
whose elements are the physical quantities of interest; L is & linear d4if-
ferential operator with respect to the position varisble :15, and B is a bilinear
differential operator with respect to Xe

Dynamical equations of this form arise in various areas of research.
For example Galeev and Karpman2 utilize the magnetohydrodynamic equations in
the description of a low density plasma in the presence of a strong magnetic
field. 1In this case g(gs,t) consists of seven elements, namely, the pertur-
bations in fluid density, fluid velocity and magnetic field, from a spatially
homogeneous, velocity free equilibrium in which there is a uniform magnetic
field, EO'
in anharmonic crystals, or the description of shallow water waves, Zabusky

In a model relevant to the description of long wavelength phenomera

and Kruska.lT make & numerical study of the Korteweg-deVries equation, which

is of a form similar to Eq. (1). He,sselmlaln,b"5 in investigating the nonlinear
interactions of gravity waves in a fluid of constant depth, uses a hydro-
dynamic description assuming incompressible, irrotational motion and that
pressure effects are negligible. In this model g(;& »t) consists of the velocity
potential and the displacement of the free surface, As a final example, Li‘tm.k6

makes use of a plasma model consisting of the Maxwell equations and two-fluid

equations of continuity and momentum transfer. This system of equations may



also be cast into the form of Eq. (1). 1In this case there are twelve physical
quantities of interest and hence as many elements of !(g,t). The operators L
and B occurring in the above examples are of varying degrees of complexity '
depending on the explicit physical problem being investigated.

The purpose of this article is to develop a formalism describing
spatially uniform turbulence within the context of the general dynamical
equation, Eq. (1), The aforementioned examples are to be kept in mind as
specific applications. In order that the problem be mathematically tractable,
the turbulence is assumed weak, corresponding to a small amplitude analysis
of Eq. (1).

In Section II, a Fourier analysis of Eq. (1) with respect to the
position variable is carried out; the resulting equation is then rewritten in
a representation in which the basis Qectors are solutions to the linear
equation (E = 0). For the purpose of introductory remarks, we record at this
point the equation for the time evolution of the wave amplitude associated with

the ath mode, Aa(g,t), in this representation, i.e.,

a
o (5t)

o, O
172
= K - - i - - -
Z fé}sl okl Mg (08, Gl Jermpl 3000w () (ol ))e)

@, C, (2)
The kernel,/(, depends on the details of the bilinear operator, B and {wa(b)]
are the eigenvalues of the linear (g = 0) equation in Fourier space. It is
assumed in Sections II-V that these eigenvalues are real, It is clear that a
small amplitude theory of Eq. (2) yields no change in Aa in lowest order; in
higher orders, however, the nonlinear terms act as perturbations which, through

the interaction between waves of differing wave number, causes Aa to change



in the course of time. The general procedure for treating problems of weak
turbulence in relation to equations of the above form has traditionally been
to obtain a perturbation solution to some order;l'6 then, by performing
appropriate statistical averages over a spatially homogeneous ensemble a
posteriori, a kinetic equation is deduced, describing the time evolution of
the correlation between two waves. This may be obtained - by considering
suitable (average) transition probsbilities per unit time as in Ref. 2,
Alternatively, a more elegant treatment (of the particular problem in which
there are only two modes, wal(k) = w(k) and waé(k) = -w(k)) has been given by

Benney and Sa.ffma.n1

who carry out a multiple-time perturbation analysis of
Eq. (2). 1In all cases, however, Refs. 1-6 perform appropriate statistical
averages after obtaining the pertwrbation solution to Eq. (2) to some order.
These approaches, by their very nature are somewhat cumbersome since the
perturbation solution to Eq. (2) entails more information than necessary to
describe the ensemble. A far more direct approach would be to work within a
framework in which the statistical averaging has been carried out a priori.
This simple concept of "a priori statistics" is applied in Section
III, with EqQ. (2) as the dynamical equation for an individual system. There
results a hierarchy of equations describing the evolution of wave correlations
characterizing the spatially hcmogeneous ensemble. The correlation between
two waves is driven by the correlation between three waves, and in turn, the
three-wave correlations are driven by four-wave correlations, and so on. 1In
Section IV, with closure of this hierarchy appropriate to the description of
resonant three-wave interactions, a simple multiple time analysis results in a

kinetic equation for the correlation between two waves.

Several properties of this kinetic equation relating to the creation



of correlations, invariants of the equation, multiple resonances, etc., are
discussed in Section V. 1In Section VI, the modifications of the techniques
and results of Sections III and IV are discussed for situations in which there
is a weak instability (or weak damping). The effects of including a trilinear

term, g(g(ﬁ,t),g(ﬁ,t),g(g,t)], in BEq. (1), are discussed in Section VII.

II: THE BASIC EQUATION IN FOURIER SPACE

Fourier anmalyzing with respect to the position variable according to

dk
2(x,t) = [ =% explik-x}¥(k,t) ,
(2r)
and
¥(k,t) =j935 exp{-1k-x}¥(x,t) , (3)

Eq. (1) may be written in the form

i gta_ ¥(k,t) = goq‘o)‘ﬁ(?ﬁ’t)’:[ dls, a8 (k~k, -k, )H, [k, 158 (k) 5t),2(k, ot )](11)

The matrix, go(l's) , and column vector gl[.lsl,'lse;g(l:'l,t) ’g(l‘.a’t)] depend upon the
structure of the operators L and 331 respectively, In addition, El is bilinear
in its ¥ arguments. Analogous to the techniques employed in time dependent

perturbation theory in quantum mechanics, it is advantageous to rewrite Eq. (&)

in a representation in vhich the basis vectors are solutions to the equation

i 5 2lot) = By alst) - 5)

with u(k,t) = g(}\t‘)e-wt, the eigenfrequencies of Eq. (5) are given by the

characteristic equation

Det(wﬁij-[Ho]iJ) =0. (6)



For purposes of the present discussion we limit ourselves to situations where
the solutions to Eq. (6) are real, In situations where there is a weak
instability, the analysis is & simple extension of the technique described
here and is briefly discussed in Section VI. Denoting the solutions of Eq.
(6) vy [wa(g)], where a labels & particular eigenvalue, the corresponding

eigenvectors {EQ(E))’ are determined from

w(ku (k) = go(l,g)-ga(,lg) . (1)

At this point it is convenient to define a row vector EP(E), adjoint to the

column vector 26(5), by the relation

0 (P () = &) B (E) (8)

t

If H. is Hermitean, 2?(5) is simply the Hermitean adjoint of gﬁ(k).

8

It follows from Egs. (7) and (8) that
(05105 (E)) (@ (k) 5, (k) = 0, (9)
and hence the orthogonality condition
() u,(k) = 0, for @ (k) # u (k) . (10)

In situations where there is a degeneracy associated with certain eigenvalues
a simple variation of the Schmidt orthogonalization procedure may be carried
out. 1In any case we assume that {E?(ﬁ)} and {2a(§)] have been chosen ortho-

gonal in such a way that

E’.a(k).lla('}s) = 'Saﬁ . (11)
Writing
Y) =) At )n(et)
(04
=) Ayt Ing(Kerl-ta (K)) (12)

o



Equation (4) becomes

1) 32 Agllst )y, (Klexpl-to, (k)¢
B
Z ﬂ (},t,l,t)Aa (ot )E, [k ko, (5 )om, ()]
o 2 1 2
l’
X eXP{-i(wal(}s,l)Waz(}ge))tJB(,lg-,{i,l-,lsz) . (13)

Taking the outer product of Eg. (13) with ga('ls) , and using the orthogonality

condition given in Eq. (11), readily yields

32 Aollit) = ). ﬂaglagas@-bl-gzmal(gl,t)Aaa(;gz,t)
CZ a

KO exat 10,004, 1), () ) ()
where
oala
/<(k,k1,~2 = U0y Uy it ()i (D) - (15)

To ensure the reality of ‘\l;(ﬁ,t), we adopt the conventions

2(-k) = 30", (16)

A (-x) = A ()", (1)
and

oK) = - (K) . (18)

In addition, the symmetry property
‘(aulae ‘fﬂea
(5 0k)" +K (k) -K( (%, k) +/<( k,-k2, k),  (19)

follows directly from relations (14)-(18).



Equation (14), advancing the amplitudes A, in time, is exact in the
context of the original dynamical equation; the form, however, 1s more amenable
to a direct analysis than that of Eq. (k). In a small amplitude theory of
Eq. (14), A, does not change in the lowest approximation, thus giving a g(g,t)
in which waves of different wave number propagate independently. In higher
order however, the nonlinear terms act as perturbations causing Aa(g,t) to
change in the course of time through interactions between waves of differing
wavenumber.

For the purpose of the study of weak turbulence, the genersl pro-
cedure in the literature has been to solve Eq. (14) in a perturbation expan-

sion, i.e.,

afet) 2t 3% B ey +

where
AK1, A~ Aa(g,o) .

Once a solution is obtained to order K3 say, appropriate statistical averages
are then carried out over a spatially homogeneous ensemble.l_6 In the section
which follows, a formalism is developed in which the statistical averaging
is done at the outset. Using Eq. (14) as the dynamical equation for an
individual system, this method of "a priori statistics" leads to equations of

evolution for wave correlations characterizing the spatially homogeneous

ensemble.

III: THE HIERARCHY FOR WAVE CORRELATIONS8

We rewrite Eq. (14) in the following notationm,

d
T Aq (20%) =Z f e (171 Ky My (078 Mg, ()
Cle,a3 :

[
/<Z§l:52,§3)exp{i(wai(gl)-wae(ge)-waé(ga))t} . (20)



Equations advancing the product of two A's in terms of the product of three
A's, and three A's in terms of four A's, etc., are simply constructed from
Eq. (20), namely,

=2 (A, (5,808, (Et))

A

Z ff”%mu{ <5( &)Aaz(l{,g’t)Aa3(§3:t)Aau(,1&+:t)

aau

<Kk e Dol ()0 ()0 (8)01) + o2} (@)

.
L]
.

3 (b (515t)-e ot (0))

Z Z ﬂ,‘&sH s+2L 5(k1 ~S+l s+2)A (k ’t)A l(-ISs-l’t)"'Aag(«lsz’t)

st=2 a

s+l 842
las+l°‘s+2
o Oty (o KO R domlaley, (), G )
Qg 1 ~s+] 7PN ~s+2 ~Ll? gl P As+2 k1 Y ~s+Y as 40 As-!-g
+ (s'e l)} (22)
K ek
The notation, (1 & 2), denotes the interchange
Q ©a,

The point of view we adopt is the following. Egquation (20) is to be
interpreted as the dynamical equation for an individual system. We now imagine
& collection of such systems and average Egs. (20)-(22) over this ensemble.

The ensemble average, (Aa '”Aa ), may be viewed as the arithmetic mean of
1 n

Aa "'Aa taken over a large number of systems or as an average over a
1 n

(probability) distribution of systems. The net result is an interconnected
chain of equations whereby the average of the product of s amplitudes )
(A, .+.A_ ) is driven by an integral operator acting on the average of the

i

product of s+l amplitudes, namely
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B% (Aa (gl,t)...Aa (k%))

Z Z f”“S*l +2{ <6(kl Ks417Esa0)

s'=2 s+l s+2

A (k. ,t)eeon (k ,t)A ( ,t)A (k_..,t))
g ‘~s ay w2 Pa ) \Rs+l s4p EH2

105+1Cs+2
x (klf£s+ifks+2)exp(i(w ()0 () 2(5s+2))t}> . (1 es')}

(23)
With the problem of uniform turbulence in mind, our basic assumption regarding
the ensemble is that the averages, (A (k

al ~1

spatially homogeneous situation. In addition, it is convenient to construct

,t)...A (k 4t)), correspond to &

from the above chain for <Aal(51’t))’ <Aa1(«151’t)Aa2(r15s’t)>""’ equations for
irreducible correlations. The irreducible s-correlation is defined by sub-

tracting from <Aoz "'Aa ) all irreducible correlations of lower order. We

first record theseldefinitions within the framework of spatial homogeneity
and the assumption that (Aoz.) = O,‘k and then comment on their significance:
0= {4, (1,0 (2)

2Ga1042(v151’t)6(k k)= (A (kl,t)A (ke,t)) (25)

Paa, (ky 5kps )8 (I #s %k, ) = <Aal<l51’t)Aae(l%e"“)“aB(Es’t” ,y  (26)

hGala2a3au(~1’~2: 3:t)5(kl+k +k +k, ) = 7\ (kl,t)...A (‘I&L,t))

- 2Ga1a ,t)2 o, (& (k ,t)s(k +k )5(53«»&)

(1 %), (50808 5y i3 )0l )

2 aloz 2 a0,
- 2 O‘]_O‘ (lit)a aza (52’1-')6(}\{‘1*'&)6(%24'}&3) ’ (27)



11

sGdi...as(ﬁl"“’t)5(51+52+"'+53) = (Aai(gi,t)...Aas(gs,t))

-Z Z S'Gal..-as' S“'S'Ga '+locoa b(k +...+k )8(k +...+k )
s' {1,2,...,8)} 5

-
- G uG uG
Z S' a oooa 1 S a ' ...O& 1" S"S"‘S a " ...a
S (1,2,...,8} 1 s +1 Yis s'+s"+1
X 8(k +...+ks,)8(k JRTITL ,+S")6(ks +s"+1+"‘*%é) (28)

The sum, (1,2 z s}’ is over permutations of 1,2,...,s; the summation over s'
Jees ey

in the second term on the right hand side of Eq. (28) runs from s'=2 to

s'=s, ', where 5 '=s/2 if s is even and (s-1)/2 if s is odd, etc.

M

Equation (24) corresponds to the assumption that g(g,t) averaged
over the ensemble is zero. A sufficient condition for this to be true, if
true initially, is

(%a§a3 k,) =0. (29)

This follows directly from averaging Eq. (20) and utilizing relation (29),
whereupon

<2 () =0, (30)

R

Whether or not relation (29) is true depends on the detailed structure of/<
and hence on the explicit physical problem being examined; in any case, for
purposes of the present analysis it is assumed throughout the remainder of

this article that Kao, »-k ) = 0, and consequently

(Aal(}gl,t)) = (Aal(lsl,o)) =0. (31)

The delta functions occurring in the definitions (25)-(28) are manifestations

of the spatial homogeneity of the ensemble. Equation (25) ensures that the
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average, <Yi(§1’t)wj(£2’t))’ where ¥, 1s the ith element of the column vector
¥, is invariant under translation as it depends on the difference X% (see
also Ref. 9). Similarly, by virtue of Eq. (26), (wi(;sl,t)wj (§2,t)w£(53,t))
is invariant under translation, and so on. We remind the reader that the

definitions of the irreducible correlations, oG and .G, in Egs. (25) and (26),

3
are of a particularly simple form because <Aa (51’t>) = 0.
1
Upon using the definitions of the irreducible correlations in Eq.

(22), the following hierarchy of equations for 2G,3G,..., results:
Sk +,) < 0. (& ,t)
gt 3‘?204& ~1?

{<Z~./:ik lc;’%’k g3 )3aaa(k K-k t)

xexp(i(wal(,lgl)-wa3(,15')-wah(l,gl-g’))to+ Goa}sl) . (2

5 (g *ep*ks3) & 3%o0,0, (g 0kp0t)
6(k1+k2+k3){ (Z fdkt /gkl,k K-k -k' Jexp(i(w (kl)-w (k')'“a,j(}fal -kx'))t)

X 1,6 o, 00, (') k' ok ’t)> t(2e1) + (3 91)}

st ([ ), AGigmmentite, tg)-u, (e, Gy
ahas

X g Gt el ()]s 2asl)sGo s aon} , G

As one continues to construct the equations for hG’SG"" it is found that

hG is driven by 5G and 2G3G terms and in general sG is driven by B+lG and




. 1

st+l-pG terms, p=2,...,5-1. The procedure and resulting structure of equa-

tions is analogous to the derivation of equations for irreducible correlations
within the BBGKY formalism.’C
The hierarchy (32),(33),e.s, represents the dynamical system of
equations to be used in describing the evolution of wave correlations charac-
terizing the spatially hamogeneous ensemble. Such a description is clearly
practical only if the correlation between s waves, sG, becomes small as the
number of waves is increased, and closure can be obtained at some level of
description. That this is in fact the case is most easily demonstrated in the

following manner. Consistent with assumption of weak nonlinearity in relation

to Eq. (14), we assume to leading order that

L~ve, eKl. (34)
Since 36 is driven by 2G2G terms, we assume
3G ~ 62 to leading order.
Similarly
hG ~ e3
and in general
G~ L, (35)

It is clear from Eq. (32) that the level of sophistication with which we
describe theevolution of the correlation between two waves, 2G, depends vitally

on the accuracy with which we describe _G. For example, in order to calculate

3

2G to order e2 and describe the leading order _G for times t ~ l/ €, we need

2
3G to order e2; consequently, hG and higher correletions can be neglected.

Similarly, to calculate 2G to order e and describe the leading order .G for

2
times t ~ l/en-l, closure may be obtained by neglecting .G and higher

correlations.
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IV: THE LOWEST ORDER (NON-TRIVIAL) KINETIC EQUATION FOR 2Ga o
172

In the context of the estimates in the previous section, we use the
multiple time perturbation techniques of Frieman1l and Sandri12 in reference

to the hierarchy (32),(33),++., With

2 (2)

2%10‘2 ¥ egeél& (kl,t €tyees )+ € G o0, (& (k sbs€tyeee )tene (36)

v 2 (2)
3Gala2a = 3Gala2a3(kl’~2’t,€t,o-c)+oot ) (37)
e3 6(3) (K, 3K Koyt y€bsees JFene 5 (38)

ala (o ozh =&y ala2a3a,+ ~lla27A3

Evidently,
&?’ (l) (kl’t €tyeee) =0, (39)
B‘t’a 25 éagz (kysts€tyeee) +3—— T o0 (1) (kl,t €tyeee)
3 H 2 t t
{<Z j:ik lgkl,k ,'1\{’1 5' é3g)+a2('}5 )'lsl"ls ,t,Et,o..)
a0,
" ‘- -k’ 40
xeXPI:L(w (k)w (k)w (klk))t}> (a@,a>} (40)
and

s(k +k +k3) 55- 3 ée& o, (El,ga,t,et,...)

= 8(*k, +k3){<[z /(akl, -0k +k3 )6 2a5(k2,t set,ees)
aho%

k, ok
X 2Gé3a (k3,t et,...)eXP{l(wal(kl}+w (k )- woé( k3))t]] + [ ;2 @’gg ] )



. 5

(Brk)(BrB)) )

[ ]
*

From Eq. (39) it is clear that

(1) (k. ,byetyeee) = (l) (k 30 €t 5000 ) o
26 0y Q'L o€ ®Q,

Since eGél& does not vary on the short time scale, t, Eq. (41) may be inte-
172

grated directly on the t scale to give

2
)5 oy OOt )

+ a(k + +k3){( [Z /<°‘klf’23,kl+k3> G(lgg(k 1€E5000)

. 4y (o -t 1y, )2
X 2Gé3()x (k3)€t}c.o) 1(0) (k]_)'*""’ (k V-0 (k:zk3)) ]

%™

ers])-(arE)(002)f . @

alea

B (i, Hi, 5 )56 @ (e x

& 0 tet,...)_s(k otk

K109

This equation, when integrated over 53, gives an explicit expression for
( ) which is to be substituted in the integrand on the right hand side

3 a. o
1%% 3
of Eq. (40) to determine the time behavior of eGé}; on the et scale and

172
2 éeé on the t scale. Of particular interest is the evolution of the dominant

12
1)
order G(
2%
(40) not yield a secular solution for

on the long time scale, €t. This is obtained by asking that Eq.

6)  on the time scale, t, as t - o,
2 ala2

. . . () . ...
Clearly's—— T o ala yields & term proportional to t in 2Gdiaé similarly, any

portions of the right hand side of Eq. (40) that tend to a constant (on the t

scale) for large t, will give contributions to eGé & secular as t. Removing
172

the secular behavior in G( ) by equating the net coefficient of t to zero,

2 afa
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G(l) on the €t scale,
2 o&gb

With this in mind, we turn to an examination of the right hand side of Eq. (4O).

then yields an equation describing the evolution of

Upon using expression (42), the integrand in Eq. (40) contains three
distinct types of time behavior on the t scale, which can be written schemati-
cally as

exp({if(k, ,k')t] {1)

exp(if(k, k' Jt}-1
if(kﬁ’g') (ii)

exp(-ig(k, ,k' )t}-1

-ig(kl,k') s 8 # f (iii) .

explif (kg k' )t)

The abbreviations f and g stand for appropriate sums or differences of three

3G(2) o)

the t scale are relatively smooth functions of their Fourier space arguments

frequencies. It is assumed thab/ﬁ 2G(l), and the initial wvalue of n

in carrying out the k'-integration in Eq. (40). Without belaboring algebraic
13

details which have been discussed elsewhere,8’ the following statements can
be made regarding the time behavior, for large t, of the right hand side of
Eq. (40).

Integration over %’ of terms involving expression (i), decay as

t »w. 1In situations where a stationary phase analysis is applicable, the

behavior for large t is to leading order

(oscillation)

L3/2 » in a three dimensional problem (43)
and
jpscii}gtiog) » in a one dimensional problem . (kk)

On the other hand, expression (ii) behaves to leading effectively as if
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exp{if(k, k' Jt}-1 i

(== ) (o), 0, “)
insofar as integrations over E' are concerned. Corrections to this are of the
form (43) or (44). Integrations over k' involving (4ii) lead to terms which
are purely oscillatory for large t as well as terms decaying like expressions
(43) or (Lk).

It is thus evident that the only terms on the right hand side of
2)

Eq. (40) that yield secular behavior in QG(

(ii). Removal of the net secular behavior («t) in 2G(2) for large t readily

are terms involving expression

gives the equation of evolution for 26(1) on the €t scale, namely

o

d (1 . l/“(k -k )
et 2 algz (kl’Et’"' = Z ‘/:ik —(w (k )-w (k' )-w (k -1{' )+id)
o ah a3

{/u(ﬁ ,k}-kl kl) G(l) (k -k! et,...)zcél& (kl,et,...

EQCZ

+/u(1;a-(§l -k )60 (et 0,680 (e Let,en)
1

2« 03

i (1) (1)
5ala2/u(-51,-5',5'-51)25a3a3(15',et,...)zGa o (k=K' et,u0n)
+<°‘1*’°‘2>; A0, . (46)
bek

In writing Eq. (46), we have utilized relation (45), and the definition

a 302

iy rks) =Kl k) + Kl ) - (1)
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V: CCMMENTS ON THE KINETIC EQUATION FOR G(l)
2 Qﬁgé

Equation (46) is a nonlinear integral differential equation descri-

bing the kinetic behavior of the correlation between two waves, QGé;; s on the
2

€t time scale. 1In practice one is ugually content with the description
afforded by Eq. (46); in principle, however, armed with a solution to this
(nonlinear) equation one could proceed to a higher order description of

2Gd o OB longer time scales. A notable exception to the complexity of Eq.
172

(46) occurs in problems where the principal value integrations associated with

P
T ()0 (E )0 (5 K

ol

give zero contribution, and the condition for resonant three wave interactions,
= ' -k!
o (1) = K" Jhog iK' (48)

cannot be satisfied. In this situation

EST 2%32 =0, (49)

and one must continue to higher order with the inclusion of four-wave corre-

lations, ll_G(3), in order to obtain a nontrivial kinetic equation for gqg%& .
12

Such, apparently are the circumstances in the work of H’asselman.h’5 It will
be assumed however, throughout the remainder of this article, that we are
dealing with physical problems where the condition for resonant three-wave
interactions, Eq. (48), can be satisfied at least for certain modes.

It is evident that the derivation of the preceding section has been
very direct and simple compared to the usual formalisms which solve Eq. (14)
to a certain order in a perturbation expansion, and then perform appropriate
statistical averages a posteriori. Another notable difference is that there

is no apparent reason to use the time scales, t,Kt,Kat,...,(Ke ~ €) as is the



. 5

case in the techniques of Benney and Saffmanl vwhich involve a perturbation
solution to Eq. (14). The time scales t, €t,... are quite natural choices
in a formalism which describes wave correlations characterizing the ensemble.

The kinetic equation, Eq. (46), for gGé}g on the €t time scale is
172

similar to results elsewhere in the literature. One point of difference is

that we have not (a priori) assumed that Gél& is zero for al distinet from a2.
172

In addition, Eq. (46) is quite general; since no restriction has been made to
a particular physical problem, the number of modes, the dimension of Y, and
the structure of the kernel K are quite arbitrary. Although Eq. (46) is
impossible to solve without épecialization to a particular problem, several
general comments can be made regarding the creation of correlations, conser-

vation laws, etc.

(a) The Creation of Correlations

We note from Egs. (17) and (25) that

*
2Gala2(-151) = 2Ga2al('51) = eGozlozg('olﬁl) . (50)

That is to say, 2Gaa(5) is real and an even function of its k argument; however

for oy distinct from o, .G is in general complex. It is clear from the
2’ 2'oa,
structure of Eq. (46) and using relations (50), that if 2G£i& is initially
2
zero {for @, distinct from a2), it remains so on the t and €t scales. That

is to say, correlations between two different modes do not develop in the
course of time if they are initially uncorrelated.

The situation is considerably different for the correlation, eGé;),

between two waves belonging to the same mode @. In this case, provided there

is at least one other mode B for which aGé;) is initially non zero, the corre-

lations, Ecé;), may be driven into the system even if initially zero. This is



simply demonstrated directly from Eq. (46). By hypothesis

G(l) = 0 for €t

i

0,

(l) #£ 0 for et

o ﬁB 0, for one mode, B say.

We then have

1
&76 2 c(xa)(kl’et)l

€t=0

= fdk'lﬂi(kl,k' -x")1%, éé)(y,et=o)2c;éé‘)(kl-y,et=o)

- LAY ~1e!
where we have utilized Eq. (19). Clearly if the equation
- ] -1t
wa('ls"l) = wﬁ(}é ) + wB('}\:’l '}\E )

has a solution, k' = 5’(51), the quantity

= 5|

€t=0
is non zero; consequently, the correlation gGéé) is driven into the system

even though initially zero., The mechanism for this has been a coupling

between the a and B modes as manifested by the delta-function in Eq. (51).

o(1)

(b) Sign of the Correlations, A

Let us assume in the remainder of Section V that the correlation
between unlike modes is initially zero. As previously demonstrated this
remains true on the t and et scales. We now turn to an examination of the
correlations, EGéé)(gl), betveen any two like modes. We note that 2Gda(5l)’
which is the energy spectral density associated with the mode @, is real and
an even function of k. by virtue of Eq. (50); in addition it is non-negative

~1
as is simply demonstrated by means of a "filter" theorem (Appendix A), i.e.,
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Goa(ﬁ) 2 0, and k,) = ( k ), Gy (lr ) real,

2 cmx
The above statements can be made a priori within the general framework of
stationary random processes. Consequently, in order that Eq. (46) be an
acceptable kinetic equation for DA

Preserve the non-negative nature of oG
The following reductio ad absurdum argument in fact demonstrates that this is

G(l), it ‘i)necessary that this equation

the case,

Take all correlations, 2 é ; , as initially positive definite.
171

Assume that the correlation to first turn negative is associated with the

mode o and that this occurs for 51 = EO‘ It follows, that at the: instant

(1) .
2G is passing through zero,
l

2G§;)(§1 F o) 2

and G(l)(k

&i) z 0, B distinct from a.

Also, at the instant Gé;) is passing through zero, Eq. (46) gives

2

0Bd
3o 0k = ) e LG, e 126 i ()t ") (')
B,d

x 080,60 et (52)

The right hand side of Eq. (52) is manifestly positive definite in nature,i.e,

1
g_z&kk)ao. (53)
This contradicts our original hypothesis of 2Gé;) turning negative. The
argument mey be continued to show that no correlations, 2 é é , turn negative
171

if all correlations are originally positive definite.
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(c) Multiple Resonances

Inherent in the derivation of the kinetic equation for eGé;& is
2

the assumption that

or (0" M (k') = 0, (54)
and ~
g (6! M (6-') = (k) (55)

are not satisfied simultaneously for some 5’ (given 5). This does not appear
to be a serious limitation on the theory, however it is of some interest to
understand how this restriction arises mathematically, and its physical
implications.

Mathematically, the delta-function rortion of the integrand in Eq.
(46), i.e., S(wa(k)-wa(g')—ws(g-g')), leads to divergent results in the k'-
integration in situations where both Eq. (54) and Eq. (55) can be satisfied

for the same 5‘. This difficulty may be traced back to the fact that replacirg

: exP{i(wa(E)-w§(§')'w5(ErEf))t}-l 5
LN RPN DR €230 ) B CN €T Ly T2

in calculating the t — « behavior of the various integrals over 5', is
incorrect under these conditions. It may be shown, for example, that in a
one-dimensional problem these integrals diverge as tl/2.8 In such situvations,
more general multiple time scales than t,et,... must be usecl,l)+ since the
wave-wave interactions take place rapidly and are of a more complicated nature,
Physically, by assuming that Eq. (54) is not satisfied for those k'
defermined from Eq. (55), we are excluding problems in which the wave-wave

interactions are "multiple" in the following sense. The resonance condition,

Eq. (55), may be interpreted as the decay of the mode w (k) into two components,



: o3

wﬂ(g') and w5(5~5') (or as the inverse process).3 We represent this schema-

tically as
A (}5')
. .'\/\/'\’\/'—‘\') N B
W (k) \\"‘-\
LY -l ?
g (K"
The group velocities of the decay modes wa(g‘) and wa(ETE') are dwa(b')/qg’
and dw (k' k)/dk' respectively. These group velocities are clearly equal if
condition (54) is satisfied. Under such circumstances the associated wave

disturbances move away with the same velocity and are thus capable of further

multiple interactions with one another. However, under the assumption that

dk (w (k') + W (k"k')) # 0 )
for those 5’ such that
wg(E') + u (k') = u ()
the wave disturbances move away from one another and do not further interact

effectively.

(d) GQuasi-Particle Conservation laws

Let us now examine certain invariants of Eq. (46), and introduce

the notation
/V]k )113) -"/;f k )‘D (k3)/‘( :,\e:k ) . (56)

We define the "number of quasi-particles" associated with the mode a and the
wave vector 51 as

(1)
_ 2G (El’et)
na(,lf,lye't ) = oza(l:.l) . (57)

The quantity na(gl) is essentially the action associated with the mode .
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By virtues of the definitions (47) and (56), and Eq. (19), VN possesses the

following symmetry properties:

100203 Qsoe
/ﬁflﬁl’}se’%) =/@1,53,§2) ) (58)
and
10013 10203 %
/\f(x"}sl:‘,ve:‘}%) = ('1\{'1,52,‘}‘:'3) . (59)

In asking that the original dynamical equation, Eq. (14), be derivable from a
Hamiltonian, Litvak6 has deduced certain symmetry properties of the kernel/<

equivalent to the following statements.

10233 193 30102
/ﬁ,{!,l,bg;}%) = ('52:‘51:53) “/\/?",153:'51:}52), for 51 = ,}52"'53 . (60)

Assuming the validity of these relations, the kinetic equation for EG«%) (}51)

may be rewritten as

3?:_1: n,(k s€t) = Z ﬂ 9’152'@535(5'52'53 )5(wa(.}51)'w3(52)'a%(53))

£,%
B b
l /ﬁh,ga,lgz,)la' .
X wa('lsl)wa(%e)a%(}ss) (n3(52’€t)%(53’%)'na(.l\:.l’e‘t)ng(}&g’et)'na(-lf.l’et)ns(lfy )))

(61)
where use has been made of Egs. (56)-(60) and (46). Equation (61) describes

the evolution of the number of quasi-particles, na(l':.’l,et) , due to resonant
three-wave interactions. Since energy and momentum are conserved on the
microscopic scale, i.e.,

wa('l\{'l) = wﬂ(vl\{-2) + w6(0153) s

and

it may be expected that the total quasi-momentum, § f%lna(‘}‘:'l,et )-131 and total

quasi-energy 5 fg}v‘lna(kl’et)wa(ﬁl) , are invariants of Eq., (61). We check that



this is the case, Making use of the oddness of n, and wa as functions of

their Fourier arguments, as well as the symmetry properties, (60), it follows

that
P (Z/; (kl,et)k dk )
E:\[Z7Akldk2dk38(kl -k k3)6(w (k;)-w (k )-ws(k ))
a,B,5
| l’"‘2’k 1§ (11715 )l €8 ) (155,68
x n > J
O o (E )wsug % (X3
=0, (62)
Similarly,
= ()S )=
Set n (k, et )wa(}gl)dl,gl) =0. (63)
(0

VI: MODIFICATIONS DUE TO A WEAK INSTARBRILITY
We now consider modifications of the results of Sections IIT and IV

in situations where there is a (weak) instability, that is

R .
o () = 0 RE) + 1r () (64)
R
vhere w, and T, are real (Yd > 0) and
R R
o F) = 0 Fn) , 1) =1L .

In place of Eq. (12), we now write

25 =) Alstdg,(Rep-10 R gt (65)

o
An analysis, completely analogous to that given in Section II, then yields the

following equation advancing Aal(kl,t) in time, i.e.,
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oAy (5,t) = 7 ()% (50)

3 Ty '
Z I/‘g’l\:‘edk?’a(kl ks )Ka (5, k)
050ty

. R R
xA%(,xgg,t)AaB(;gyt)exp{1<walq~:,l>-wa2<52>-wa3<53>m. (66)

Equation (66) is of the same form as Eq. (14) with the exception of the

appearance of the term, v (k A (k
T

struction of & hierarchy using Eq. (66) as the dynamical equation may be

»t), on the right hand side. The con-

carried out in a manner identical to the analysis of Section III. The only

modification of the equation for Gdla o, (s = 2,s4.) is the inclusion of

a term

(v (kl)+...+‘r (1: ))sGal-..as(l‘-l""’%-1)5(1«‘—1”«52*“'*%)

“™

on the right hand side.

26(1& on the €t time scale
A%

may still be obtained as in Section IV, if the instability index, Ichnga(k)l’

A theory describing the evolution of

is of order €. The situation in which the instability index is of order unity
is mathematically intractable since the correlations increase by an order of

magnitude on the short time scale t (for non zero initial values). Writing
T, (k) er(l)( Ep)teee

the only modification to Egs. (39), (MO) and (41}, occurs in Eq. (40) which
becomes

3§ t o ai& (kl,t €t 000 ) +-z;- 5 él (kl,t €tyeea)

= (Yc(zi)(l'sl)...ré]a‘z l))EG(gl& (}Sl,t,et,.--) + (r.h.s. of Eq. ()“'0)) . (67)
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The equation describing 2(‘,(1& on the €t time scale is then
2

) 1
3t 2Géi&2 = (7£i)(51)*7£;)('§1))2G£;g2
+ (r.h.s, of Eq. (46)) . (68)

It is possible of course that the solution to Eq. (68) may be such that 2G(l)

increases by an order of magnitude on the et time scale and consequently

destroys the ordering. However, since the driving terms nonlinear in 2G(l)

are of the same order (initially on the et time scale) as the (unstable) linear

driving term, the description by Eq. (68) may be valid for a considerable
length of time on the et scale.

It is often the situation in practice that 76(5) varies slowly in
time, say on the et time scale. Evidently the analysis in arriving at Eq.
(68) from Eq. (66) is the same, the only exception being that Ya.(l{oi) is
replaced by Yai(}&i’et)' It should also be pointed out that nowh:;re in the
derivation of Eq. (68) is the assumption that T, > O utilized; consequently,

the resulting equation for zGélg on the €t scale is equally wvalid if the
172

growth rate, ‘ra, is negative corresponding to damping.
VII: MODIFICATIONS DUE TO TRILINEAR TERMS

Many problems of physical interest contein in addition to the
bilinear term, B(Y,¥), in Eq. (1), a trilinear term, T(Y,¥,¥), and perhaps
higher multilinear terms. Such situations usually arise when the physical
model becomes more sophisticated. For example, & plasms description by means
of the Maxwell equations and the zero pressure two-fluid equations of con-
tinuity and momentum transfer can be put into the form of Eq. (1), with the

only nonlinearity being bilinear. However, if the zero pressure assumption
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is relaxed, additional trilinear and higher multilinear terms appear.
One is still able to carry out an analysis similar to that of

Section II, With the problem in mind of describing the evolution of gGé}&
172

on the et time scale, it turns out to be necessary to include only the modi-
fications presented by trilinear effects. This gilves an additional term to

the right hand side of Eq. (14) of the form.
Z I/fikedk U, B (k) ~ko-Kak )/&‘1’ kpokgok,)

X By (0t )y <k3,t)A%<k rempli(ey (g)-u, (a)s, ()0, ()00
(69)

where the kernel/(%k ,k3 kh) is constructed in & similar manner to the

kernelféﬁaj 2,k3) Paralleling the analysis of Section III, we ask that

/(1 2) 3) k)"'ot (70)

in order that (Aa (El,t)) remain zero if initially so. With the inclusion of
1

expression (69) in the formalism, it is evident that Eq. (32) for oG is modi-

fied by )G and GG driving terms. Similarly Eq. (33) for .G is modified by

272 3

5G and 2G3G driving terms, and so on. To the order necessary to describe the

evolution 2Gél& on the et time scale, the only changes in Egs. (39), (40)
172
and (41), occur in Eq. (40) which now has an additional term on the right hand

side, namely

[ ) S 82 063, oot (v (o () (59

= %% e R,
%3%%
1040305 1050403 -
</<0 ’ 1’~h’ )+ Nl ko) +KJ 1"~l+’~u’k1)>] [; - g;] y

(1)




29

Carrying out an analysis similar to that in Section IV with the inclusion of
expression (T1), yields an additional term in the equation of evolution for

the correlation G on the et time scale, 1In particular, the expression

2 ala
;}f%f&&h(ﬁ)ac‘gg (kl)hplltl,k K-k, ) + °‘1 §1> ,  (712)

vhere
10000408 coaly aood;
ILF l’kl’ﬁ)-#’-k ) /gl ) )~)+} 5_,_) +/(n'kl}~1+)kl) ) +/(1kl’ ﬂ)-l-’«)-l-’k ) 2

(73)
is added to the right hand side of Eq. (46).

CONCLUDING REMARKS:

Working within a framework in which the statistical averaging has
been carried out a priori is conceptually, a natural and direct approach.

The simplicity of mathematical analysis (in Section IV) bears witness to the
practicality of such a formalism.

It is also evident that few difficulties have been encountered by
staying within the context of a quite general nonlinear equation. Since the
dimension of ¥ is arbitrary, and since nowhere has an explicit form for the
kernel.ﬁ( or [wa} been assumed, the formalism and resulting kinetic equation
for 2Géi& are applicable to a wide variety of physical problems. In addition
it has been demonstrated that a generalization of the technique for situations
in which there is a weak instability or trilinear nonlinearities, is a rela-
tively simple process.
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APPENDIX A:
The following "filter" theorem due to Kaufman™ represents a simple

technique of demonstrating the non-negative nature of Gda(g), and is essen-

2
tially a mathematical formulation of a physical argument given by Papoulis.l6
For simplicity of notation we omit the subscript o and variable t in the
discussion that follows.

Let us define a functionzq(g) by the relation ‘
Alx) = F(k)ak) , (a-1)

where F(k), the "filter" function, is the Fourier transform of a real valued

(but otherwise arbitrary) function of X. By virtue of the relation
*
F(-k) = F(k) , (a-2)

and Eq. (17), it follows that

Al-k) =Ax)” . (a-3)
We thus have from Egs. (25), (A-1) and (A-2) that
(AQk)) Alsy)) = G )80k 41,) (k)
where
Gs) = Ir(y) %60, - (a-5)
It is readily shown from Egs. (17), (25), (A-3), and (A-4) that
f =g o) = () (a-6)
and
/ (—Z“% Gle) = (A , (a-T)

where the quantities A(x) and;4(§) are the (real-valued) inverse Fourier
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transforms of A(k) a.nd,-‘](‘l‘c') respectively. Consequently we have the inequali~

ties:
fg’kv &)z 0, (a-8)
and
f%lp(g)l%(g) 20, (a-9)

Relations (A-8) and (A-9) together with the arbitrariness of the
filter function F(k) are sufficient to prove the fact that G(k) is non-negative.
This is most simply seen by the following reductio ad absurdum argument: Let
us assume that G(El) is negative in a region R of k-space, and non-negative

elsewhere. We now choose F(‘l‘{'l) such that
F(k) =0, kKR,

and F(k) non zero for some region R, € R. It then follows that

1

ﬁglF(g)lze(g) - f ax|F (1)1 %) < 0,
keR

which contradicts statement (A-9). Consequently G(k) is non-negative.
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t In this analysis it is not assimed that EO is Hermitean since this is only
a sufficient condition for the reality of {wa].

$

In general, for a spatially homogeneous ensemble, (Aa(}s,t)) = lGa(t )8 (k);

we make the additional assumption that lGa(t) = O.




